The Pseudomonas syringae avrRpt2 gene product promotes pathogen virulence from inside plant cells.

نویسندگان

  • Z Chen
  • A P Kloek
  • J Boch
  • F Katagiri
  • B N Kunkel
چکیده

Several bacterial avr genes have been shown to contribute to virulence on susceptible plants lacking the corresponding resistance (R) gene. The mechanisms by which avr genes promote parasitism and disease, however, are not well understood. We investigated the role of the Pseudomonas syringae pv. tomato avrRpt2 gene in pathogenesis by studying the interaction of P. syringae pv. tomato strain PstDC3000 expressing avrRpt2 with several Arabidopsis thaliana lines lacking the corresponding R gene, RPS2. We found that PstDC3000 expressing avrRpt2 grew to significantly higher levels and often resulted in the formation of more severe disease symptoms in ecotype No-0 plants carrying a mutant RPS2 allele, as well as in two Col-0 mutant lines, cpr5 rps2 and coil rps2, that exhibit enhanced resistance. We also generated transgenic A. thaliana lines expressing avrRpt2 and demonstrated, by using several different assays, that expression of avrRpt2 within the plant also promotes virulence of PstDC3000. Thus, AvrRpt2 appears to promote pathogen virulence from within the plant cell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Pseudomonas syringae type III effector AvrRpt2 promotes pathogen virulence via stimulating Arabidopsis auxin/indole acetic acid protein turnover.

To accomplish successful infection, pathogens deploy complex strategies to interfere with host defense systems and subvert host physiology to favor pathogen survival and multiplication. Modulation of plant auxin physiology and signaling is emerging as a common virulence strategy for phytobacteria to cause diseases. However, the underlying mechanisms remain largely elusive. We have previously sh...

متن کامل

Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology.

The Pseudomonas syringae type III effector AvrRpt2 promotes bacterial virulence on Arabidopsis thaliana plants lacking a functional RPS2 gene (rps2 mutant plants). To investigate the mechanisms underlying the virulence activity of AvrRpt2, we examined the phenotypes of transgenic A. thaliana rps2 seedlings constitutively expressing AvrRpt2. These seedlings exhibited phenotypes reminiscent of A....

متن کامل

Cleavage of the Pseudomonas syringae type III effector AvrRpt2 requires a host factor(s) common among eukaryotes and is important for AvrRpt2 localization in the host cell.

Many phytopathogenic bacteria use a type III secretion system to deliver type III effector proteins into the host plant cell. The Pseudomonas syringae type III effector AvrRpt2 is cleaved at a specific site when translocated into the host cell. In this study, we first demonstrate that the factor(s) required for AvrRpt2 cleavage is present in extracts from animal and yeast cells, as well as plan...

متن کامل

Arabidopsis RIN4 negatively regulates disease resistance mediated by RPS2 and RPM1 downstream or independent of the NDR1 signal modulator and is not required for the virulence functions of bacterial type III effectors AvrRpt2 or AvrRpm1.

Bacterial pathogens deliver type III effector proteins into the plant cell during infection. On susceptible (r) hosts, type III effectors can contribute to virulence. Some trigger the action of specific disease resistance (R) gene products. The activation of R proteins can occur indirectly via modification of a host target. Thus, at least some type III effectors are recognized at site(s) where ...

متن کامل

The type III effector HopF2Pto targets Arabidopsis RIN4 protein to promote Pseudomonas syringae virulence.

Plant immunity can be induced by two major classes of pathogen-associated molecules. Pathogen- or microbe-associated molecular patterns (PAMPs or MAMPs) are conserved molecular components of microbes that serve as "non-self" features to induce PAMP-triggered immunity (PTI). Pathogen effector proteins used to promote virulence can also be recognized as "non-self" features or induce a "modified-s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular plant-microbe interactions : MPMI

دوره 13 12  شماره 

صفحات  -

تاریخ انتشار 2000